Lecture 2: What is Proof?

Math 295

08/26/16
Evolution of Proof

Proof, a relatively “new” idea

Modern mathematics could not be supported at its foundation, nor construct the “top floor” without precise statements

Intuition works up to a point
Evolution of Proof

Proof, a relatively “new” idea

Modern mathematics could not be supported at its foundation, nor construct the “top floor” without precise statements

Intuition works up to a point

Four “Stages”:
Evolution of Proof

Proof, a relatively “new” idea

Modern mathematics could not be supported at its foundation, nor construct the “top floor” without *precise statements*

Intuition works up to a point

Four “Stages”:

- just answers—volumes, areas, lengths, angles, relationships; practical
- demonstration (intuition)—that it works, calculation, formulae
- verification/justification—plausible picture, description, analogy, invoke the gods
- modern proof
Right pyramidal frustum
Egyptians: Practical Questions

Right pyramidal frustum

\[V = \frac{h}{3} (a^2 + ab + b^2) \]

Known in 1850 BCE.

Requires calculus for proof of derivation
Right pyramidal frustum

\[V = \frac{h}{3}(a^2 + ab + b^2) \]

Known in 1850 BCE.

Requires calculus for proof of derivation

“Answer”: No record of derivation or proof.
Euclid: The Outlier

Greeks: Geometry, trigonometry, “forms”, idealizations
Euclid: The Outlier

Greeks: Geometry, trigonometry, “forms”, idealizations

- Triangles, rectangles, circles (building/construction)
Greeks: Geometry, trigonometry, “forms”, idealizations

- Triangles, rectangles, circles (building/construction)
- The father of rigor (300 BCE): Euclid
- Precursors: Thales (600 BCE), Pythagoras and Pythagoreans (550 BCE), Eudoxus (400 BCE)—calculations and declarations, “theorems”
Greek's Geometry, trigonometry, "forms", idealizations

- Triangles, rectangles, circles (building/construction)
- The father of rigor (300 BCE): Euclid
- Precursors: Thales (600 BCE), Pythagoras and Pythagoreans (550 BCE), Eudoxus (400 BCE)—calculations and declarations, "theorems"
- Who was Euclid?
Euclid: The Outlier

Greeks: Geometry, trigonometry, “forms”, idealizations

- Triangles, rectangles, circles (building/construction)
- The father of rigor (300 BCE): Euclid
- Precursors: Thales (600 BCE), Pythagoras and Pythagoreans (550 BCE), Eudoxus (400 BCE)—calculations and declarations, “theorems”
- Who was Euclid? geometer, archivist, organizer
Euclid: The Outlier

Greeks: Geometry, trigonometry, “forms”, idealizations

- Triangles, rectangles, circles (building/construction)
- The father of rigor (300 BCE): Euclid
- Precursors: Thales (600 BCE), Pythagoras and Pythagoreans (550 BCE), Eudoxus (400 BCE)—calculations and declarations, “theorems”
- Who was Euclid? geometr, archivist, organizer
- The Elements—planar geometry
- Axioms, definitions, theorem, proof
Greeks: Geometry, trigonometry, “forms”, idealizations

- Triangles, rectangles, circles (building/construction)
- The father of rigor (300 BCE): Euclid
- Precursors: Thales (600 BCE), Pythagoras and Pythagoreans (550 BCE), Eudoxus (400 BCE)—calculations and declarations, “theorems”
- Who was Euclid? geometer, archivist, organizer
- The Elements—planar geometry
- Axioms, definitions, theorem, proof
- “Demonstration” and “Justification”
- But where did the proofs come from?
Dark Ages
Renaissance Number Theorists

- Gerolamo Cardano (1501–1557) and Niccolo Tartaglia (1500–1576)
- Era of “the master”
Renaissance Number Theorists

- Gerolamo Cardano (1501–1557) and Niccolo Tartaglia (1500–1576)
- Era of “the master”
- “Solving” the cubic equation
- Forms of solution, authorship, conflict
Renaissance Number Theorists

- Gerolamo Cardano (1501–1557) and Niccolo Tartaglia (1500–1576)
- Era of “the master”
- “Solving” the cubic equation
- Forms of solution, authorship, conflict
- Public challenge matches (Tartaglia v. Ferrari)
Renaissance Number Theorists

- Gerolamo Cardano (1501–1557) and Niccolo Tartaglia (1500–1576)
- Era of “the master”
- “Solving” the cubic equation
- Forms of solution, authorship, conflict
- Public challenge matches (Tartaglia v. Ferrari)
- “Demonstration” and “Verification”: I have the answer, I can check these cases.
Calculus Era I

• Johannes Kepler (1571–1630): Proof, statistical methods

• Isaac Barrow (1630–1667): Tangent problem, discovered the fundamental theorem of calculus, derive solutions to physical problems

• Isaac Newton (1642–1727): Student of Barrow’s, sloppily axiomatize some ideas in calculus to derive equations and solutions to difficult problems; motivated by “infinitesimal change” in physical problems

• Gottfried Leibniz (1646–1716): Philosopher and polymath, looser notation and better intuition provided the backbone of modern analysis
Calculus Era II

Ideas
Calculus Era II

Ideas

- infinitely small
- infinitely big
- “infinitesimals”, “limits”
Calculus Era II

Ideas

- infinitely small
- infinitely big
- “infinitesimals”, “limits”

Big equations/formulae...on shaky footing; “Justification” and explication
Calculus Era II

Ideas

- infinitely small
- infinitely big
- “infinitesimals”, “limits”

Big equations/formulae...on shaky footing; “Justification” and explication

Solutions to big problems (e.g., the area problem, the tangent problem, calculus of variations)

Not without critics—George Berkeley (1685–1753)

Transition:
Ideas

- infinitely small
- infinitely big
- “infinitesimals”, “limits”

Big equations/formulae...on shaky footing; “Justification” and explication

Solutions to big problems (e.g., the area problem, the tangent problem, calculus of variations)

Not without critics—George Berkeley (1685–1753)

Transition:

Leonhard Euler (1707–1783): Prolific, pioneering...sloppy; intuitive arguments, formal manipulation
Calculus Era II

Ideas

- infinitely small
- infinitely big
- “infinitesimals”, “limits”

Big equations/formulae...on shaky footing; “Justification” and explication

Solutions to big problems (e.g., the area problem, the tangent problem, calculus of variations)

Not without critics—George Berkeley (1685–1753)

Transition:

Leonhard Euler (1707–1783): Prolific, pioneering...sloppy; intuitive arguments, formal manipulation

Example: The Basel problem
Golden Era: 18th and 19th Century

Moving towards modern proof
Golden Era: 18th and 19th Century

Moving towards modern proof

- **Joseph Louis Lagrange (1736–1813):** Move from blind formal manipulation and intuition, Taylor polynomials

- **Karl Friedrich Gauss (1777–1855):** Adequate (modern) analysis of series

- **August Louis Cauchy (1789–1857):** French counterpart to Gauss; limits, continuity, differentiation, and definite integral (modern), complex calculus

- **Karl Weierstrass (1815–1897):** Topology, foundations, real numbers, "real analysis" including "ε–δ"
David Hilbert (1862–1943):

- Last conversant mathematician of entire subject
- Wanted *axiomatic* and *consistent* formulation of set theory
- Formalism: mathematics is manipulation of symbols according to agreed upon formal rules
- Hilbert’s Program: Formal system which is complete, consistent, decidable
- Hilbert’s 23 Problems at the International Congress in 1900
- Axiomatic and consistent construction of the integers
- “What are the rules?” and ”What is the context?”
Henri Poincare (1854–1912): Great mathematician; intuition—opposite Hilbert and Russell; mathematics fundamentally distinct from logic; proof has intuitive steps, not purely mechanical

Nicolas Bourbaki (1930’s): pseudonym for French mathematicians; encyclopedists: consistent, rigorous treatment of all common mathematics; no pictures, no intuition

Bertrand Russell (1872–1970): foundations; reducing mathematics to its most elementary “grains”; logicism; constructing the integers

Kurt Godel (1906–1978): Incompleteness; destruction of Hilbert’s Program and Russell/Whitehead Foundationalism/logicism
In 1931 he proved:

For any computable axiomatic system that is powerful enough to describe the natural numbers/arithmetic (e.g. the Peano axioms or ZFC set theory), that:

- If the formal system is consistent, it cannot be complete.
- The consistency of the axioms cannot be proven within the system.

These theorems ended attempts by many of those above to find a "small" set of consistent axioms sufficient for all of modern mathematics.
Incompleteness

In 1931 he proved:

For any computable axiomatic system that is powerful enough to describe the natural numbers/arithmetic (e.g. the Peano axioms or ZFC set theory), that:

If the formal system is consistent, it cannot be complete.
In 1931 he proved:

For any computable axiomatic system that is powerful enough to describe the natural numbers/ arithmetic (e.g. the Peano axioms or ZFC set theory), that:

- If the formal system is consistent, it cannot be complete.
- The consistency of the axioms cannot be proven within the system.
In 1931 he proved:

For any computable axiomatic system that is powerful enough to describe the the natural numbers/arithmetic (e.g. the Peano axioms or ZFC set theory), that:

If the formal system is consistent, it cannot be complete.

The consistency of the axioms cannot be proven within the system.

These theorems ended attempts by many of those above to find a “small” set of consistent axioms sufficient for all of modern mathematics.
Russell’s Two Directions and Weirdness

WEIRDNESS

← Foundations ← Seemingly Self-Evident Mathematical Facts → The Infinite →

WEIRDNESS
Russell’s Two Directions and Weirdness

WEIRDNESS

← Foundations ← Seemingly Self-Evident Mathematical Facts → The Infinite →

WEIRDNESS

Modern Mathematics: walking on egg shells
Russell’s Two Directions and Weirdness

WEIRDNESS

← Foundations ← Seemingly Self-Evident Mathematical Facts → The Infinite →

WEIRDNESS

Modern Mathematics: walking on egg shells

Proof in this class:

- Pretty axiomatic, basic
- We will not prove everything, and we will define many things intuitively
- Take many basic mathematical facts as given
- May take somethings for granted and come back and prove them later
Axiom

1 Definition versus Theorem
Axiom

Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another
Axiom

Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another

Definition

Definition versus Theorem
Axiom

Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another

Definition

Declaration of the properties of a new object, written only in terms of other well-defined objects and axioms

1Definition versus Theorem
Axiom

Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another

Definition

Declaration of the properties of a new object, written only in terms of other well-defined objects and axioms

Theorem

1Definition versus Theorem
Fundamental Terms I

- **Axiom**

 Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another

- **Definition**

 Declaration of the properties of a new object, written only in terms of other well-defined objects and axioms

- **Theorem**

 A true statement in a theory which relates defined terms and other statements within the theory;

1. Definition versus Theorem
Fundamental Terms I

- **Axiom**

 Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another

- **Definition**

 Declaration of the properties of a new object, written only in terms of other well-defined objects and axioms

- **Theorem**

 A true statement in a theory which relates defined terms and other statements within the theory;

 Often stated in the form: “If \(p \), then \(q \)” where \(p \) and \(q \) are statements which are true or false;

\(^1\)Definition versus Theorem
Fundamental Terms I

- **Axiom**
 Fundamental building block of a theory, stated in terms “outside” of the theory; should be consistent with one another

- **Definition**
 Declaration of the properties of a new object, written only in terms of other well-defined objects and axioms

- **Theorem**
 A true statement in a theory which relates defined terms and other statements within the theory;

 Often stated in the form: “If \(p \), then \(q \)” where \(p \) and \(q \) are statements which are true or false;

- **Hypothesis(es)/ Conclusion**
Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic

Many types of proof, many proof techniques

Lemma, Corollary, Proposition

A Lemma is a "small" statement which only requires a "small" proof; usually a lemma and its proof are part of a larger proof of a theorem

A Corollary is a small proposition which follows rather immediately from a theorem or its proof.

A Proposition is just a (quantifiable) statement which is true or false; usually does not require much proof
Fundamental Terms II

Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic
Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic

Many types of proof, many proof techniques
Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic

Many types of proof, many proof techniques

Lemma, Corollary, Proposition
Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic

Many types of proof, many proof techniques

Lemma, Corollary, Proposition

A Lemma is a “small” statement which only requires a “small” proof; usually a lemma and its proof are part of a larger proof of a theorem
Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic

Many types of proof, many proof techniques

Lemma, Corollary, Proposition

A Lemma is a “small” statement which only requires a “small” proof; usually a lemma and its proof are part of a larger proof of a theorem

A Corollary is a small proposition which follows rather immediately from a theorem or its proof.
Proof

A sequence of logically permissible steps connecting the hypothesis to the conclusion—uses rules of inference and logic.

Many types of proof, many proof techniques.

Lemma, Corollary, Proposition

A Lemma is a “small” statement which only requires a “small” proof; usually a lemma and its proof are part of a larger proof of a theorem.

A Corollary is a small proposition which follows rather immediately from a theorem or its proof.

A Proposition is just a (quantifiable) statement which is true or false; usually does not require much proof.
Modus ponens:

- If the statement "p implies q" is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q.

p is sufficient for q; q is necessary for p.

Sets
- A set is any (unordered) collection of (mathematical) objects; note one can have sets of sets (examples to follow).

Statements:
- An (open) statement: any mathematical statement; not necessarily true or false.
- Propositions: A statement which is true or false, and can be proved or disproved.

Remember Godel...
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.
Fundamental Notions I

- Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q.

- **Modus ponens:** If the statement “\(p \) implies \(q \)” is true, and the hypothesis \(p \) holds, then we know \(q \) must hold.

Proofs generally take the form: Assume \(p \) (which may not always hold), derive the conclusion \(q \).

Whenever \(p \), then \(q \). \(p \) is sufficient for \(q \);
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q. p is sufficient for q; q is necessary for p.
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q. p is sufficient for q; q is necessary for p.

Sets
A set is any (unordered) collection of (mathematical) objects;
Fundamental Notions I

- **Modus ponens**: If the statement “\(p \) implies \(q \)” is true, and the hypothesis \(p \) holds, then we know \(q \) must hold.

 Proofs generally take the form: Assume \(p \) (which may not always hold), derive the conclusion \(q \).

 Whenever \(p \), then \(q \). \(p \) is sufficient for \(q \); \(q \) is necessary for \(p \).

- **Sets**

 A set is any (unordered) collection of (mathematical) objects; note one can have **sets of sets** (examples to follow)
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q. p is sufficient for q; q is necessary for p.

Sets
A set is any (unordered) collection of (mathematical) objects; note one can have sets of sets (examples to follow)

Statements:
An (open) statement: any mathematical statement; not necessarily true or false.
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q. p is sufficient for q; q is necessary for p.

Sets
A set is any (unordered) collection of (mathematical) objects; note one can have sets of sets (examples to follow)

Statements:
An (open) statement: any mathematical statement; not necessarily true or false.

Propositions: A statement which is true or false, and can be proved or disproved.
Modus ponens: If the statement “p implies q” is true, and the hypothesis p holds, then we know q must hold.

Proofs generally take the form: Assume p (which may not always hold), derive the conclusion q.

Whenever p, then q. p is sufficient for q; q is necessary for p.

Sets
A set is any (unordered) collection of (mathematical) objects; note one can have sets of sets (examples to follow)

Statements:
An (open) statement: any mathematical statement; not necessarily true or false.

Propositions: A statement which is true or false, and can be proved or disproved. Remember Godel...
Sets I

- The empty set: \emptyset
Sets I

- The empty set: \emptyset
- Lists
Sets I

- The empty set: \emptyset
- Lists
 - $\{1, 2, 3\}$
Sets I

- The empty set: \(\emptyset \)
- Lists
 - \(\{1, 2, 3\} \)
 - \(\{x, y, z, p, q, r\} \)
Sets I

- The empty set: \(\emptyset\)

- Lists
 - \(\{1, 2, 3\}\)
 - \(\{x, y, z, p, q, r\}\)
 - \(\{+, -, *, /\}\)
Sets I

- The empty set: \emptyset

- Lists
 - $\{1, 2, 3\}$
 - $\{x, y, z, p, q, r\}$
 - $\{+, -, *, /\}$
 - $\{\sin(\theta), \cos(\theta), \tan(\theta)\}$
Sets I

- The empty set: \(\emptyset \)
- Lists
 - \(\{1, 2, 3\} \)
 - \(\{x, y, z, p, q, r\} \)
 - \(\{+, -, *, /\} \)
 - \(\{\sin(\theta), \cos(\theta), \tan(\theta)\} \)
- Ellipses
Sets I

- The empty set: \(\emptyset \)

- Lists
 - \(\{1, 2, 3\} \)
 - \(\{x, y, z, p, q, r\} \)
 - \(\{+, -, *, /\} \)
 - \(\{\sin(\theta), \cos(\theta), \tan(\theta)\} \)

- Ellipses
 - \(\{1, 2, 3, ...\} \)
 - \(\{a, b, c, ..., z\} \)
 - \(\{1, 3, 5, 7, ...\} \)
Sets I

- The empty set: \emptyset

- Lists
 - $\{1, 2, 3\}$
 - $\{x, y, z, p, q, r\}$
 - $\{+, -, *, /\}$
 - $\{\sin(\theta), \cos(\theta), \tan(\theta)\}$

- Ellipses
 - $\{1, 2, 3, \ldots\}$
 - $\{a, b, c, \ldots, z\}$
 - $\{1, 3, 5, 7, \ldots\}$
 - $\{2, 4, \ldots\}$
Sets I

- The empty set: \emptyset

- Lists
 - $\{1, 2, 3\}$
 - $\{x, y, z, p, q, r\}$
 - $\{+, -, *, /\}$
 - $\{\sin(\theta), \cos(\theta), \tan(\theta)\}$

- Ellipses
 - $\{1, 2, 3, \ldots\}$
 - $\{a, b, c, \ldots, z\}$
 - $\{1, 3, 5, 7, \ldots\}$
 - $\{2, 4, \ldots\}$ BAD
The empty set: \emptyset

Lists
- $\{1, 2, 3\}$
- $\{x, y, z, p, q, r\}$
- $\{+,-,\ast,\div\}$
- $\{\sin(\theta), \cos(\theta), \tan(\theta)\}$

Ellipses
- $\{1, 2, 3, \ldots\}$
- $\{a, b, c, \ldots, z\}$
- $\{1, 3, 5, 7, \ldots\}$
- $\{2, 4, \ldots\}$ BAD

Set builder
Sets I

- The empty set: \emptyset
- Lists
 - $\{1, 2, 3\}$
 - $\{x, y, z, p, q, r\}$
 - $\{+, -, *, /\}$
 - $\{\sin(\theta), \cos(\theta), \tan(\theta)\}$
- Ellipses
 - $\{1, 2, 3, \ldots\}$
 - $\{a, b, c, \ldots, z\}$
 - $\{1, 3, 5, 7, \ldots\}$
 - $\{2, 4, \ldots\}$ B A D
- Set builder
 - $\{x : x > 0\}$
 - $\{x \mid x^2 + 5x + 6 = 0\}$
 - $\{z \mid z = 2 \times m + 1, \text{ where } m \text{ is an integer}\}$
Subset/superset:

- $S \subseteq R$ if all members of S are also present in R (proper subset: $S \subset R$ or $S \subsetneq R$)

- Universe: U is the set from which all sets in considerations are drawn; if we are interested in a set S then $S \subset U$ (context dependent)

- When talking about numbers, U usually equals C, R, Z, or N

- Complement: For a set $S \subset U$ its complement is everything in U not in S

 $$S' = U - S = U \setminus S$$

 Sometimes this is written as S^c.

- $x \in S$ is an element of S

 - if $x \not\in S$, then $x \in S'$.
Subset/superset: $S \subseteq R$ if all members of S are also present in R (proper subset: $S \subset R$ or $S \subsetneq R$)
• Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \varsubsetneq R \))

• Universe:
Subset/superset: $S \subseteq R$ if all members of S are also present in R (proper subset: $S \subset R$ or $S \subsetneq R$)

Universe: \mathcal{U} is the set from which all sets in considerations are drawn;
Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \varsubsetneq R \))

Universe: \(\mathcal{U} \) is the set from which all sets in considerations are drawn;

if we are interested in a set \(S \) then \(S \subset \mathcal{U} \) (context dependent)
• Subset/superset: $S \subseteq R$ if all members of S are also present in R (proper subset: $S \subset R$ or $S \subsetneq R$)

• Universe: \mathcal{U} is the set from which all sets in considerations are drawn; if we are interested in a set S then $S \subset \mathcal{U}$ (context dependent)

When talking about numbers, \mathcal{U} usually equals $\mathbb{C}, \mathbb{R}, \mathbb{Z}$ or \mathbb{N}
Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \varsubsetneq R \))

Universe: \(\mathcal{U} \) is the set from which all sets in considerations are drawn; if we are interested in a set \(S \) then \(S \subset \mathcal{U} \) (context dependent)

When talking about numbers, \(\mathcal{U} \) usually equals \(\mathbb{C}, \mathbb{R}, \mathbb{Z} \) or \(\mathbb{N} \)

Complement: For a set \(S \subset \mathcal{U} \) its complement is everything in \(\mathcal{U} \) not in \(S \)
Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \not\subset R \))

Universe: \(\mathcal{U} \) is the set from which all sets in considerations are drawn; if we are interested in a set \(S \) then \(S \subset \mathcal{U} \) (context dependent)

When talking about numbers, \(\mathcal{U} \) usually equals \(\mathbb{C}, \mathbb{R}, \mathbb{Z} \) or \(\mathbb{N} \)

Complement: For a set \(S \subset \mathcal{U} \) its complement is everything in \(\mathcal{U} \) not in \(S \)

\[S' = \mathcal{U} - S = \mathcal{U} \setminus S, \]

where “−” and “\(\setminus \)” are set minus (more later)
Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \varsubsetneq R \))

Universe: \(\mathcal{U} \) is the set from which all sets in considerations are drawn; if we are interested in a set \(S \) then \(S \subset \mathcal{U} \) (context dependent)

When talking about numbers, \(\mathcal{U} \) usually equals \(\mathbb{C}, \mathbb{R}, \mathbb{Z} \) or \(\mathbb{N} \)

Complement: For a set \(S \subset \mathcal{U} \) its complement is everything in \(\mathcal{U} \) not in \(S \)

\(S' = \mathcal{U} - S = \mathcal{U} \setminus S \),

where “−” and “\(\setminus \)" are set minus (more later)

Sometimes this is written as \(S^C \)
Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \varsubsetneq R \))

Universe: \(\mathcal{U} \) is the set from which all sets in considerations are drawn; if we are interested in a set \(S \) then \(S \subset \mathcal{U} \) (context dependent)

When talking about numbers, \(\mathcal{U} \) usually equals \(\mathbb{C}, \mathbb{R}, \mathbb{Z} \) or \(\mathbb{N} \)

Complement: For a set \(S \subset \mathcal{U} \) its complement is everything in \(\mathcal{U} \) not in \(S \)

\[S' = \mathcal{U} - S = \mathcal{U} \setminus S, \]

where “−” and “\(\setminus \)” are set minus (more later)

Sometimes this is written as \(S^C \)

\(x \) is an element of \(S \) is written \(x \in S \),

\(x \) is an element of \(S \) is written \(x \in S \),
Subset/superset: \(S \subseteq R \) if all members of \(S \) are also present in \(R \) (proper subset: \(S \subset R \) or \(S \varsubsetneq R \))

Universe: \(\mathcal{U} \) is the set from which all sets in considerations are drawn; if we are interested in a set \(S \) then \(S \subset \mathcal{U} \) (context dependent)

When talking about numbers, \(\mathcal{U} \) usually equals \(\mathbb{C}, \mathbb{R}, \mathbb{Z} \) or \(\mathbb{N} \)

Complement: For a set \(S \subset \mathcal{U} \) its complement is everything in \(\mathcal{U} \) not in \(S \)

\[S' = \mathcal{U} - S = \mathcal{U} \setminus S, \]

where “−” and “\(\setminus \)” are set minus (more later)

Sometimes this is written as \(S^C \)

\(x \) is an element of \(S \) is written \(x \in S \),

if \(x \notin S \), then \(x \in S' \).
Let \(S, R \subset \mathcal{U} \).

- Set Equality: \(S = R \) if
 - \(S \) and \(R \) have exactly the same elements
Let $S, R \subset \mathcal{U}$.

- Set Equality: $S = R$ if $S \subseteq R$ and $R \subseteq S$
Let $S, R \subseteq \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements
Let $S, R \subset \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union:**
Sets III

Let \(S, R \subset \mathcal{U} \).

- **Set Equality:** \(S = R \) if \(S \subseteq R \) and \(R \subseteq S \)

 \(S \) and \(R \) have exactly the same elements

- **Union:** \(S \cup R \equiv \{ x \in \mathcal{U} : x \in S \text{ or } x \in R \} \)

- **Intersection:** \(S \cap R \equiv \{ x \in \mathcal{U} : x \in S \text{ and } x \in R \} \)

- **Difference:** \(S - R = \{ x \in S : x \notin R \} = S \setminus R \)

- **Symmetric Difference:** \(S \triangle R \equiv \{ x \in \mathcal{U} : x \in S \text{ and } x \notin R \text{ or } x \notin S \text{ and } x \in R \} \)
Let $S, R \subset \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union:** $S \cup R \equiv \{x \in \mathcal{U} : x \in S \text{ or } x \in R\}$

- **Intersection:**
Let $S, R \subset \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union:** $S \cup R \equiv \{x \in \mathcal{U} : x \in S \text{ or } x \in R\}$

- **Intersection:** $S \cap R \equiv \{x \in \mathcal{U} : x \in S \text{ and } x \in R\}$
Let $S, R \subset \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union:** $S \cup R \equiv \{x \in \mathcal{U} : x \in S \text{ or } x \in R\}$

- **Intersection:** $S \cap R \equiv \{x \in \mathcal{U} : x \in S \text{ and } x \in R\}$

- **Difference:**
Let \(S, R \subseteq \mathcal{U} \).

- **Set Equality:** \(S = R \) if \(S \subseteq R \) and \(R \subseteq S \)

 \(S \) and \(R \) have exactly the same elements.

- **Union:** \(S \cup R \equiv \{ x \in \mathcal{U} : x \in S \text{ or } x \in R \} \)

- **Intersection:** \(S \cap R \equiv \{ x \in \mathcal{U} : x \in S \text{ and } x \in R \} \)

- **Difference:** \(S - R = \{ x \in S : s \notin R \} = S \setminus R \)
Let $S, R \subset \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union:** $S \cup R \equiv \{ x \in \mathcal{U} : x \in S \text{ or } x \in R \}$

- **Intersection:** $S \cap R \equiv \{ x \in \mathcal{U} : x \in S \text{ and } x \in R \}$

- **Difference:** $S - R = \{ x \in S : s \notin R \} = S \setminus R$

 If $S \subseteq R$ then $S - R =$...

- **Symmetric Difference:** $S \triangle R =$...
Let $S, R \subset \mathcal{U}$.

- **Set Equality**: $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union**: $S \cup R \equiv \{x \in \mathcal{U} : x \in S \text{ or } x \in R\}$

- **Intersection**: $S \cap R \equiv \{x \in \mathcal{U} : x \in S \text{ and } x \in R\}$

- **Difference**: $S - R = \{x \in S : s \notin R\} = S \setminus R$

 If $S \subseteq R$ then $S - R = ...$

- **Symmetric Difference**:

Webster Proof and Its History
Let $S, R \subset \mathcal{U}$.

- **Set Equality:** $S = R$ if $S \subseteq R$ and $R \subseteq S$

 S and R have exactly the same elements

- **Union:** $S \cup R \equiv \{x \in \mathcal{U} : x \in S \text{ or } x \in R\}$

- **Intersection:** $S \cap R \equiv \{x \in \mathcal{U} : x \in S \text{ and } x \in R\}$

- **Difference:** $S - R = \{x \in S : s \notin R\} = S \setminus R$

 If $S \subseteq R$ then $S - R = ...$

- **Symmetric Difference:** $S \triangle R = ...$
Quantifiers (constructs to quantify statements)

- For all \forall
- There exists \exists
- There exists a unique $\exists !$
- Negation: For any statement P, the negation (read: "not P") is written: $\sim P$
- Cardinality: $|S| = \#(S)$ number of elements in S.
- Infinity: Concept (not to be treated like a number); a class of cardinalities of certain sets; not finite.
Fundamental Notions II

- Quantifiers (constructs to quantify statements)
 - For all
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists
Quantifiers (constructs to quantify statements)

- For all \forall
- There exists \exists

Cardinality: $|S| = \#(S)$ number of elements in S.

Infinity: Concept (not to be treated like a number); a class of cardinalities of certain sets; not finite.
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists \(\exists \)
- There exists a unique
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists \(\exists \)
- There exists a unique \(\exists! \)
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists \(\exists \)
- There exists a unique \(\exists! \)

Negation: For any statement \(P \), the negation (read: “not \(P \)”) is written:
Fundamental Notions II

Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists \(\exists \)
- There exists a unique \(\exists! \)

Negation: For any statement \(P \), the negation (read: “not \(P \)”) is written: \(\sim P \)
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists \(\exists \)
- There exists a unique \(\exists ! \)

Negation: For any statement \(P \), the negation (read: “not \(P \)”) is written: \(\sim P \)

Cardinality:
Quantifiers (constructs to quantify statements)

- For all \(\forall \)
- There exists \(\exists \)
- There exists a unique \(\exists! \)

Negation: For any statement \(P \), the negation (read: “not \(P \)) is written: \(\sim P \)

Cardinality: \(|S| = \#(S) \) number of elements in \(S \).
Quantifiers (constructs to quantify statements)

- For all \forall
- There exists \exists
- There exists a unique $\exists!$

Negation: For any statement P, the negation (read: “not P”) is written: $\sim P$

Cardinality: $|S| = #(S)$ number of elements in S.

Infinity:
Fundamental Notions II

- Quantifiers (constructs to quantify statements)
 - For all \(\forall \)
 - There exists \(\exists \)
 - There exists a unique \(\exists! \)

- Negation: For any statement \(P \), the negation (read: “not \(P \)”) is written: \(\sim P \)

- Cardinality: \(|S| = \#(S) \) number of elements in \(S \).

- Infinity: Concept (not to be treated like a number);
Fundamental Notions II

- Quantifiers (constructs to quantify statements)
 - For all \(\forall \)
 - There exists \(\exists \)
 - There exists a unique \(\exists ! \)

- Negation: For any statement \(P \), the negation (read: “not \(P \)”) is written: \(\sim P \)

- Cardinality: \(|S| = #(S) \) number of elements in \(S \).

- Infinity: Concept (not to be treated like a number); a class of cardinalities of certain sets;
Fundamental Notions II

- Quantifiers (constructs to quantify statements)
 - For all \forall
 - There exists \exists
 - There exists a unique $\exists!$

- Negation: For any statement P, the negation (read: “not P”) is written: $\sim P$

- Cardinality: $|S| = \#(S)$ number of elements in S.

- Infinity: Concept (not to be treated like a number); a class of cardinalities of certain sets; not finite