Activity 1
MATH 120, Fall 2016

Name (Please print):_______________________________

This is a graded activity. You may work in groups, but please turn in your own paper. The first page of material is reference material, **please read that first!**

Reference Material

- We say that
 \[\lim_{x \to a} f(x) = L \]
 when (informally) the values of \(f(x) \) can be made as close to \(L \) as we would like by considering those \(x \) values which are sufficiently close to (on either side) \(x = a \). Even more informally: as the \(x \) values get close to \(a \), the \(y = f(x) \) values get close to \(L \).

- Recall: we do not actually care about what happens at \(f(a) \), we are trying to describe what happens to \(f(x) \) as \(x \) is “near” \(a \).

- As we discussed in class, we can also talk about left and right hand limits, which only consider \(x \) approaching \(a \) from the left side \(\lim_{x \to a^-} \) or right side \(\lim_{x \to a^+} \).

- More quantitatively, the formal definition of a limit is as follows:
 \[\lim_{x \to a} f(x) = L \]
 means:

 For any (small) number \(\epsilon > 0 \), we can find a (small) number \(\delta > 0 \) so that:

 if \(|x - a| < \delta \) then we know (for certain) that \(|f(x) - L| < \epsilon \).

 Recall, in this context \(|c - d| \) measures the *distance* between \(c \) and \(d \).

- The following are the so-called *limit laws* that can help in the evaluation of limits:

 Let \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \), and let \(c \) be a constant:

 \[\lim_{x \to a} [f(x) \pm g(x)] = L \pm M \]
 \[\lim_{x \to a} [cf(x)] = cL \]
 \[\lim_{x \to a} [f(x)g(x)] = L \cdot M \]
 \[\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \text{, so long as } M \neq 0. \]
Compute the following limits, and provide justification for your work in a neat and orderly fashion.

1. \[\lim_{{x \to 2}} \frac{x^2 + x - 6}{x - 2} \]

2. \[\lim_{{x \to 3}} \frac{x - 2}{x^2 + x - 6} \]

3. \[\lim_{{x \to 3}} \frac{x^2 + x - 6}{x - 2} \]

4. \[\lim_{{x \to 2}} \left[\frac{\sin \left(\frac{7\pi x}{6} \right) + e^x}{x^2 + \pi} \times \frac{x^2 + x - 6}{x - 2} \right] \]
5. Let \(f(x) = \frac{|x|}{x} \).

(a) \(\lim_{x\to 1} f(x) \)

(b) \(\lim_{x\to -1} f(x) \)

(c) \(\lim_{x\to 0} f(x) \)

6. \(\lim_{x\to -1} \frac{1}{(x+1)^2} \)

7. Let \(f(x) = \frac{\sin(x)}{x} \).

Estimate \(\lim_{x\to 0} f(x) \) by considering the following sequence of \(x \)-values: \(\{\pi/2, .5, .25, .1, .01, .001\} \) (use a calculator to evaluate the function at these points).
8. \(\lim_{t \to 0} \left[\frac{1}{t} - \frac{1}{t^2 + t} \right] \)

9. \(\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x} \)

10. \(\lim_{\theta \to 0} \frac{\sin(2\theta)}{\sin(\theta)} \)