Section 2.1

Problem 1

Yes, something can be both an element and a subset of the same set. For example, \{
1
\} is both an element and a subset of the set \{1,\{1\}\}.

Problem 3

\(A \times \emptyset = \emptyset \times A = \emptyset\).

Problem 4

(a) \{{1}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}.

(b) \{{1,2,3}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, \{2,3,5\},
\{2,4,5\}, \{3,4,5\}\}.

(c) \{((1), (1)), ((1), (1, 2)), ((2), (2)), ((2), (1, 2)), ((1, 2), (1, 2))\}.

Problem 5

(a) False. Let \(A = \{1, 2\}, B = \{1, 3\},\) and \(C = \{2, 3\}.\) Then \(A \cup B = \{1, 2, 3\},\)
\(B \cap C = \{3\}.\) Thus
\((A \cup B) \cap C = \{2, 3\}\)
but
\(A \cup (B \cap C) = \{1, 2, 3\}.
\)

A correct formulation is
\((A \cup B) \cap C = (A \cap C) \cup (A \cap B).\)
(b) False. Let the universe \(U = \{1, 2, 3, 4\} \), let \(A = \{1, 2\} \), and let \(B = \{2, 3\} \). Then \(A \cap B = \{2\} \), \(A' = \{3, 4, 5\} \), and \(B' = \{1, 4\} \). Thus

\[
(A \cap B)' = \{1, 3, 4\}
\]

but

\[
A' \cap B' = \{4\}.
\]

A correct formulation is

\[
(A \cap B)' = A' \cup B'.
\]

(c) False. Let \(A = \{1, 2\} \), \(B = \{2, 3\} \), and \(C = \{1, 3\} \). Then \(B \cup C = \{1, 2, 3\} \), \(A - B = \{1\} \), and \(A - C = \{2\} \). Thus

\[
A - (B \cup C) = \emptyset
\]

but

\[
(A - B) \cup (A - C) = \{1, 2\}.
\]

A correct formulation is

\[
A - (B \cup C) = (A - B) \cap (A - C).
\]

(d) True.
Problem 8

(a) Vacuously true. It is impossible for two sets to be proper subsets of one another.

(b) True. If A is a subset of $A \cap B$, then A “fits inside” their intersection, then it “fits inside” both A and B.

(c) False. Let $A = \{1, 2\}$, $B = \{1, 2\}$, and $C = \{2, 3\}$. Then $A \cup B = \{1, 2\} \subseteq A \cup C = \{1, 2, 3\}$, but $B \not\subseteq C$.

(d) False. Let $A = \{1, 2\}$, $B = \{2, 3\}$, $C = \{1, 2, 3\}$, and $D = \{2, 4\}$. Then $A \cap B = \{2\} \subseteq \{2\} = C \cap D$, but $B \not\subseteq D$.

(e) False. Let $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{1, 2, 4\}$. Then $A \not\subseteq B$ and $B \not\subseteq C$, but $A \subseteq C$.

(f) Vacuously true. A power set is a set of sets, not the empty set.
(g) False. Let \(A = \{1\} \), \(B = \\{\{1\}, 2\} \), and \(C = \\{\{1\}, 2\} \). Then \(A \in B \) and \(B \in C \), but \(A \notin C \).

(h) False. Let \(A = \{1\} \), \(B = \{1, 2\} \), and \(C = \{1, 2, 3\} \). Then \(A \subseteq B \) and \(B \in C \), but \(A \notin C \).

(i) True. If \(A \) “fits inside” \(B \), then everything that’s not in \(B \) should “fit inside” everything that’s not in \(A \).

(j) False. Let \(A = \emptyset \), \(B = \{3\} \), \(C = \{1\} \), and \(D = \{1, 2\} \). Then \(A \times B = \emptyset \subseteq C \times D = \{(1, 1), (1, 2)\} \), but \(B \not\subseteq D \).

(k) True. In this case we don’t have to worry about the empty set messing things up, since the two sets in the Cartesian products are the same: even if \(A = \emptyset \), \(A \times A = \emptyset \) is still a subset of \(B \times B \).

(l) True. If \(A \) “fits inside” \(B \), then it doesn’t intersect anything outside of \(B \).

Problem 10

(a) \(\{1, 4, 9, 16, 25, 36, 49\} \).

(c) \(\{4, -1\} \).

(e) \(\{3, 8, 13, 18, 23\} \).

(f) \(\{\{2, 4\}, \{1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\} \).

Problem 12

(a) \(|A \cup B| = s + t - u| \).

(b) \(|A \times B| = st| \).

(c) \(|P(A)| = 2^s| \).

(d) \(|A - B| = s - u| \).

Problem 14a

(i) False. Let \(A = \{1, 2\} \), \(B = \{2, 3\} \), and \(C = \{1, 3\} \). Then \(A \triangle (B \cup C) = (A - (B \cup C)) \cup ((B \cup C) - A) = ((1, 2) \setminus \{1, 2, 3\}) \cup (\{1, 2, 3\} \setminus \{1, 2\}) = \emptyset \cup \{3\} = \{3\} \), while \((A \triangle B) \cup (A \triangle C) = ((A - B) \cup (B - A)) \cup ((A - C) \cup (C - A)) = (\{1\} \cup \{2\}) \cup (\{2\} \cup \{3\}) = \{1, 2, 3\} \).

A correct formulation is \(A \triangle (B \cup C) = (A \triangle B) \cup C - (A \cap C) \). (There are many others.)
(ii) False. Let \(A, B, \text{ and } C \) be as in part (i). Then
\[
A \triangle (B \cap C) = (A - (B \cap C)) \cup ((B \cap C) - A) = (\{1, 2\} - \{3\}) \cup (\{3\} - \{1, 2\}) = \{1, 2\} \cup \{3\} = \{1, 2, 3\},
\]
while
\[
(A \triangle B) \cap (A \triangle C) = ((A - B) \cup (B - C)) \cap ((A - C) \cup (C - A)) = (\{1\} \cup \{2\}) \cap (\{2\} \cup \{3\}) = \{2\}.
\]
A correct formulation is
\[
A \triangle (B \cap C) = ((A \triangle B) \cap C) \cup (A - B).
\]
(There are many others.)

(iii) True.

(iv) False. If \(A = \{1\}, \) then
\[
A \triangle A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset \neq A.
\]
A correct formulation is \(A \triangle A = \emptyset. \)

Problem 6 (bonus)

(a) False. Let \(A = \{1, 2\} \) and \(B = \{2, 3\}. \) Then \(\{1, 3\} \in \mathcal{P}(A \cup B) \) since it is a subset of \(A \cup B = \{1, 2, 3\}, \) but \(\{1, 3\} \notin \mathcal{P}(A) \cup \mathcal{P}(B) \) since it is not a subset of either \(A \) or \(B. \)

(b) True. Any element of \(\mathcal{P}(A \cap B) \) is a subset of \(A \cap B, \) and so it has to be a subset of \(A \) and a subset of \(B, \) and thus is in \(\mathcal{P}(A) \cap \mathcal{P}(B). \) Conversely, any element of
\(\mathcal{P}(A) \cap \mathcal{P}(B) \) is a subset of both \(A \) and \(B \), and so it is a subset of \(A \cap B \), and thus an element of \(\mathcal{P}(A \cap B) \).

(c) True. Any element of \(A \times (B \cup C) \) has its first coordinate in \(A \) and its second coordinate in either \(B \) or \(C \). So it will certainly be in either \(A \times B \) or \(A \times C \). Conversely, any element of \((A \times B) \cup (A \times C)\) either in \(A \times B \) or \(A \times C \), so its first coordinate will be in \(A \) and its second coordinate will be in either \(B \) or \(C \). (If one side of the equation is the empty set, you can check that the other side must be the empty set too.)

(d) True. Any element of \(A \times (B \cap C) \) has its first coordinate in \(A \) and its second coordinate in both \(B \) and \(C \). So it will certainly be in \(A \times B \) and \(A \times C \). Conversely, any element of \((A \times B) \cap (A \times C)\) is in both \(A \times B \) and \(A \times C \), so that its first coordinate is in \(A \) and its second coordinate is in both \(B \) and \(C \). (If one side of the equation is the empty set, you can check that the other side must be the empty set too.)

(e) False. Let \(A = \{1\} \) and \(B = \{2\} \). Then \(\mathcal{P}(A \times B) = \mathcal{P}(\{(1,2)\}) = \{\emptyset, \{(1,2)\}\} \), while \(\mathcal{P}(A) \times \mathcal{P}(B) = \{\emptyset, \{1\}\} \times \{\emptyset, \{2\}\} = \{(\emptyset, \emptyset), (\emptyset, \{2\}), (\{1\}, \emptyset), (\{1\}, \{2\})\} \).

Problem 13 (bonus)

For 0 sets, the Venn diagram is just a box, so there is 1 portion.
For 1 set, the Venn diagram has 2 portions.
For 2 sets, the Venn diagram has 4 portions.
For 3 sets, the Venn diagram has 8 portions.

The pattern seems to be: for \(n \) sets, the Venn diagram has \(2^n \) portions. We can see why this might be true by considering what happens when we add a new set to our consideration. Suppose we have \(n \) sets in a Venn diagram (so that the diagram has \(2^n \) portions) and we add an \(n+1 \)st one, \(S_{n+1} \). For each of the \(2^n \) original portions, either \(S_{n+1} \) intersects it or it doesn’t - that is, we have two distinct choices. When we build the new diagram, then, we will need \(2 \times 2^n = 2^{n+1} \) portions.

Problem 14b (bonus)

\[|A \triangle B| = |A| - |A \cap B| + |B| - |A \cap B| = s + t - 2u. \]